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Abstract—Axisymmetric buckling of polar-orthotropic quasi-heterogeneous laminated annular plates are
studied. A closed type solution is obtained for the case of two particular ratios of inner and outer pressures in
terms of first and second kind Bessel functions of fractional order and Lommel functions. Two ratios of
pressures are chosen in such a way as to represent a solution of the second order differential equation for the
stress resultant function when only one of the fundamental solutions is left. The general procedure presented
herein is valid for symmetrically laminated plates as well as for plates composed of materials with
proportional properties. Numerous examples are shown indicating the effect of plates’ heterogeneity on their
elastic stability.

NOTATION

A expression defined in eqn (12)
A, elastic area
A} extensional rigidity
B expression defined in eqn (12)
By elastic static moment
C undetermined constant
Dy elastic moment of inertia
E;. elastic stiffness moduli
E,F,.G, linear functionals
J. Bessel function of first kind and order n
k plate orthotropy parameter in bending
L() differential operator defined in eqn (18)
NN, radial compressions
r,ro inner and outer radii, respectively
s plate orthotropy parameter in stretching
SmaSmn Lommel functions
transverse displacement of buckled plate
Bessel function of second kind and order n
slope in radial direction of buckled plate
geometric parameter
stress resultant function.
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1. INTRODUCTION

Several studies of buckling of homogeneous, circular plates under radial compression are
reported in the literature. The axisymmetric buckling problem has been solved by
Woinowsky-Krieger [1] in the form of Bessel functions. Later on Pandalai and Patel[2] applied a
power series expansion method to the same problem. The asymmetric buckling problem was
solved by Mossakowski[3] in the form of hyper-geometric functions by the method of Frobenius.
Recently, Swamidas and Kunukkasseril[4] examined the axisymmetric and first asymmetric
buckling of full orthotropic plates formulating the displacement of the buckled plate in terms of
Bessel and Lommel functions.

The buckling of heterogeneous plates has also obtained considerable attention. The
axisymmetric equilibrium and buckling theory for heterogeneous orthotropic circular and annular
plates was established by Stavsky in [5]. A closed type solution was given by Stavsky and
Friedland[6] for the elastic stability equations of isotropic composite circular plates. The
buckling problem of orthotropic circular plates, which are quasi-heterogeneous in the thickness
direction, was solved by Stavsky{7].

The solution of the axisymmetric buckling problem of annular orthotropic plates subjected to
arbitrarily specified inner and outer pressures is yet unknown.

In the present study a closed-type solution is given for axisymmetric buckling of
quasi-heterogeneous annular plates, for two specific ratios of outer/inner radial compressions.
The solution of corresponding homogeneous orthotropic plates is obtained from the general
solution by specialization.
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1348 1. ELISHAKOFF and Y. STAVSKY

2. STATEMENT OF PROBLEM

The axisymmetric stability and thermal-buckling equations for heterogeneous orthotropic
plates, formulated by Stavsky[7], are first specialized to the buckling of composite
quasi-heterogeneous annular plates under radial compressions. Setting in eqns (2.29), (2.49) and
(2.50) of reference [7],

p: =0, Los=Lau=0, Mir = Mor =, t))

the following two simultaneous equations, describing the neutral equilibrium of the annular plate,
in terms of the slope B8 and the stress function ¥ are obtained:

AL (r*Y + r¥) — ALY = (),
(2)
D (r*B"+rB") — DeeB = r¥B + rC,

where a prime denotes differentiation with respect to r and the elastic coefficients are defined by
the following integrals over the plate thickness

h—h,

(AeDw=|  (L)Exdz Gk =r6) 3)

—hq

where [A*]=[A '] and C is an undetermined constant. The total plate thickness is h, and ho,
given by the expression

h i -
hO:f Ep dz(J Ey dz) . Gk =10 @
] [

defines the distance from the plate’s bottom face to the neutral plane. The plate under
consideration is quasi-heterogeneous, i.e. a reference plane exists in the plate with respect to
which all elastic statical moments vanish

hwhu
B, = f E,zdz = 0. ©)
—hgy

The plate strain-displacement relations, the expressions for plate curvatures, axial
displacement, and the resultants in terms of the stress function ¥ are given by

€ro = U', €0 = U[F, K. =B, ke = B,
w=-[ Barec, ©)
N, =¥/r, N, =¥
where C, is an undetermined constant.
The bending moments are independent of ¥, for the class of quasi-heterogeneous plates

considered, and are related to the curvatures by

Mr = Drri{r + D?‘HKﬁy
Me = DerKr + DGGKG

)
The vertical shear force is given by
V =Clr, @®

C being the same constant as in differential eqn (2.2). Thus C is the coefficient of proportionality
between V and of inverse of r. From this it can be concluded that C vanishes for regularity or
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boundary conditions for which V vanishes. For other cases, such as those considered in this
study, C has to be taken into account in the stability analysis.

Equations (2) are supplemented by three conditions at each boundary point which could be
written in general form

E,("=0, F,iw)=0,G,(w)=0,y=r,ro )
where E,, F, and G, are some linear functionals.

Let us specify the form of the functionals E,. The plate is compressed at the inner and outer
edges by the in-plane compressions N;, N,, respectively. So, for E, we have

E.(¥) =¥, + Nir, E,, = ¥|,, + Noro (10)

r: and ro being the inner and outer radii, respectively.
Integration of eqn (2.1), taking boundary condition (10) into consideration, resuits in the
following solution for ¥:
V= Ar + Br (1n
where
A= (—.Nori_s‘l + N;ro—s“l)R_l
Bz(Norgs—l"Nirgsul)Rux (12)

O\ 28
vR= rfs"'rgs“[lw (ﬂ) ]
ro

and s is the plate orthotropy parameter in stretching

s = (A?;/Age vz — (Aaa lArr)m- (13)

The problem is formulated as follows: Given the ratio No/N; = Q, find the corresponding critical
pair of No and N:, when the plate buckles axisymmetrically. The exact solution of such an
eigenvalue problem for any (1 is yet unknown.

In what follows, closed-type solutions are shown for a somewhat specialized class of
dependent boundary conditions (10) resulting in an expression (11) for ¥ consisting of either an A
term or B term, namely

N; =Non*™ (14)
or

Ni=Nen ™' 15
to give B =0 or A = 0, respectively, in eqn (11). Let us denote the case when B = 0 as “the first

eigenvalue problem” and when A = 0 as “the second eigenvalue problem”. The non-dimensional
geometric parameter 7 is defined as

n=rlr 0<n<l, (16)
For example, for the first eigenvalue problem (14) the buckling eqn (2.2) becomes

LBY+Ap" "B =1p (1n
where L{...) is the differential operator in nondimensional form

L(.)=p 4D, ,dC.)

dp2 +pr'~"“k2p(. B .),
o L ;:=N’01'o2
p - ¥g ’ )‘ o Drr (18)

Veol. 11 No. 12--F
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X is the nondimensional critical buckling load, ¢ is the new constant, analogues to C in eqn (2.2)
and k is the plate orthotropy parameter in bending

k = (DBO/Drr)”Z- (19)

Nontrivial solutions of eigenvalue problems are represented by the set of eigenvalues A;
(j=1,2,...). The first eigenvalue A, determines the lowest critical dependent buckling loads N,
and Ni.

For the second eigenvalue problem (15) we obtain the following buckling equation

LB+ B =fp 20

where f denotes the analogue of C for this particular case.

For quasi-heterogeneous plates with s = 1, the first eigenvalue problem (14) reduces to the
case of buckling of annular plates when the two edges are subjected to equal pressures (see, e.g.
works of Schubert[8] and Yamaki[9] on the buckling of isotropic homogeneous plates for which
s = k = 1). The second eigenvalue problem {15) reduces to the buckling of annular plates when
the load ratio is N:/No=17"". This was considered for isotropic homogeneous plates by
Buckens[10]. The same problem was studied for different boundary conditions by Mansfield[11]
and Lizareff and Bareeva[12].

3. CLOSED TYPE SOLUTION FOR THE FIRST EIGENVALUE PROBLEM
Introducing a new independent variable

— 2)‘ (1+5)/2
=15 e
the differential eqn (17) becomes
Sl_zﬁ l.d_é _l 4k2 ] — =25/(1+5)
ax % dxuly[1 x*(1+x) B =tx 22)

where t, is a new constant. The solution of the ordinary differential eqn (21) is of the form
B=Bn+B (23)
where By is the solution of the corresponding homogeneous equation and 8, is a particular
solution of eqn (22).
The solution for B is

Br = CiJ.(x)+ C2Ya(x) (24)

where J. and Y, denote Bessel functions of order n of the first and second kind, respectively.
The order n is related to the orthotropy measures s and x by the following expression:

2k
n= Tos (25)
The particular solution of eqn (22) is
3;’; = CBSm.n (X)’ (26)
_1-35
m= T+’ @7
and $.. is a Lommel function[13]
_ oo (_1}pxm+2p+l
()= 2, o T Y N 3w T Fp @

p=0Q
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As it is seen from (28) the function §,... is undefined when m + n or m — n are odd negative
integers. In our case the first restriction is satisfied automatically, because s >0 and x >0. The
second restriction is not satisfied when as ~ x = —a — 1, @ being any positive integer or zero. In
these cases, it follows from the general theory of Bessel functions (see [13], pp. 345-348), that
Lommel’s function S...(x)

_ moapfM—n+ 1\ /m+n+1
Sorn(X) = S (X) +2 r( K )r( ! )

x {sin [(m - n)g]fn(x)—cos [(m - n)-g] Y, (x)} (29)
is to be used.
It is noted that for the discrete values of s and x, mentioned above, S,.. may be represented
by the following terminating series in descending powers of x:
SmalX)=x""{1=[(m = 1P = n’]x 7+ [(m = 1Y = n’l(m =3P —n’x "~ L. (30)

Thus the plate’s slope can be generally written:

B = Cl]n(x)+C2Yn(x)+C3Zm.n(x) (31)
where
Smax)foras—x=—a-1, a=0,12,...
mn(X) = {sm.., (x) for any other s and x (32)
The plate’s deflection is given by the following expression:
~w=C, f J.(x)x™ dx + sz Y. ()x™ dx + Cngm.,.(x)x'" dx + C.. (33)

Substitution of (33) into the boundary conditions (9.2) results in a system of homogeneous
algebraic equations. The conventional requirement of nontriviality yields a characteristic
equation

detfai;lixa =0 (34
where
an = Hi( f Jx™ dx), = Hi( f Yux™ dx),
(35)
H.(j Zm_,,xm dx), Aig = H,(l)
and

Ht Fr’HZ—‘Gr-H3 FrogHat—G

where F, and G, are linear functionals associated with the plate boundary conditions at the inner
and outer radii. The characteristic eqn (34) is transcendental in nature and has an infinite number
of roots. The lowest critical pressure corresponds to the first root of the characteristic
determinant.

Consider now the specific case of a balanced composite plate with s =k = 1. The eqn (22)

becomes
@g 1dp, _
& xdx (“‘)5 T (36)

The solution of the corresponding homogeneous equation is

B =Ciux)+ C.Yx). G7)
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It can be seen that the particular solution is
B» = tilx. (38)
For the deflection we have
=w = CJehp)+ C:Yo(Ap)+ Csinp + Ca. (39)
This expression coincides with Yamaki’'s formula (eqn 5 in [9]) for the deflection of buckled

isotropic annular plates uniformly compressed for which also s = x = 1. Consequently Yamaki's
results are included as a particular case of this study.

4. CLOSED TYPE SOLUTION FOR THE SECOND EIGENVALUE PROBLEM

In analogy with the previous section, we obtain the following differential equation for the
second eigenvalue problem, except for the case that s =1,

Vnﬁztzxq_‘, q:]l—_-t—zi, s#1 (40)

where t, is a constant, V,(...) denotes Bessel operator

d --)+(1—’;—;)(...) @1

and x is a new variable in this particular case

x= Téés—‘p—l—z—:?. 42)

It would be shown easily that the solution of the second eigenvalue problem can be obtained

from the corresponding solution of the first eigenvalue problem only by interchanging “s” by

“—g and “k” by “—k”, taking into account the eqn (42). As a result we again obtain expression

(33) for the deflection of the buckled plate, but now the indices m and n are replaced by p and g,
respectively, defined by

P15 951" {43)
The function Z,,(x) is given by

Spa(x) fork=l+a—-asork=as—a-1,

Spa{x) for any other s and k. (“44)

Zoa0)={

The characteristic determinant is given by eqn (34) with p and g, replacing m,n,
respectively, in expressions (35).

Consider the special case for which s =1 and k is not necessarily unity. The differential
eqn (20) reduced to a nonhomogeneous Euler equation

g dp
2.,«..—. —_— 2... 2 P
p dpz+pdp+(/\ kB =fp

with the following general solution:

C.per Czp'm fork>2a
B ={(Ci+ C:Inp)p” fork=A

Cicos (VA=K Inp)+ Casin (VA =k Inp) for k <A
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and the particular solution obtainable using the method of variation of parameters. If in addition
to s =1 k is also unity, we obtain the expression for the deflection of the buckled plated used by
Buckens[10], Manfield[11] and Lizareff and Bareeva[12].

5. PLATES COMPOSED OF MATERIALS WITH PROPORTIONAL PROPERTIES

A simplification of the solution of Sections 3 and 4 is possible for a plate composed of
materials with proportional properties. Such a plate may be treated as a heterogeneous plate
composed of materials having elastic stiffness matrices as follows:

B, EY] [E% E°
b Erl-elir 22 (46)

[\]
or ] E or 08

where p; are some positive constants; j denotes the layer number; E>., Eb, E&,, Ese are elastic
stiffness moduli for a reference orthotropic material.

It could be shown easily that a plate having the property (46) is quasi-heterogeneous in the
thickness direction and, moreover, x = 5. Then for both the first and the second eigenvalue
problems, the following equality holds

m+n=1. “n

Using an integral representation of the Lommel function
S =%’[Yn(x)f x™T, (x) dx —J"(x)fxmyn(x)dx] 48)

and, furthermore, Lommel’s formula
Jorr(X) Y (x) = Ja(x)Yoir(x) = 2/ mx 49)
in view of eqn (47), we will arrive at
Sman =X (50)
Finally, the eqn (33) becomes
—w=x"[-ClJ_m(x)= C.Y_(x)+(2m)'Csx" 1+ C,s (51)

The elements a; of the characteristic determinant (34) change accordingly.
Note, that for the quasi-heterogeneous polar orthotropic plate with proportional properties,
we have x = s = (E%/E?,)"” which is independent of p; and of the thickness of the various layers.

6. EXAMPLE PROBLEMS AND DISCUSSION

The numerical results were obtained on an IBM 370/165 Computer at the Technion. The plates
considered were taken to be with total thickness h (= 4 cm), composed of lower and upper face
layers of thicknesses h, and h., respectively, glued to an inner core layer of thickness h.. The
plates were clamped at the inner and outer radii, with functionals F, and G, as follows

F.(..)=1,G,(. ‘)Z%}"—)L:
' (52
_ _d(..) )
Fof..)) 1,G,b(...)———dr .

The Figs. 1 and 2 represent the buckling behavior of plates composed of materials with
proportional properties.
The plates were composed of orthotropic layers having the following elastic stiffness matrix
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Fig. 1. Bounding buckling curves for annular plates laminated of @ and b materials. The 1st eigenvalue problem
(1 =05,p = 10).
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Fig. 2. Bounding buckling curves for annular plates laminates of @ and b materials. The 2nd eigenvalue
problem (n =0-5,p =2).

as given in eqn (16), where the reference orthotropic material has the following moduli

kgz’ Ef= 2,=0-05><10~k—g—2, ?,ﬂ:O-leO“:—mgi. (53)

ES =2x10° -
cm cm

For all three-layered plates considered the proportionality factors p; in (46) are taken to be
p1=ps=1and p, = p. The face layers are then made of the same material whereas the core layer
is generally of a different material. Various combinations of materials “a” and “b" are
considered with the following elastic moduli

(Bl =[gos o1 |¥10" e [l = IEL, (59

Further, we also use “d" and “b°° materials with properties obtained from the moduli (54) by
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Fig. 3. Critical loads for clamped annular plates laminated of 4 and b materials. ““1"-1st eigenvalue problem,
*#27-2nd eigenvalue problem.
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Fig. 4. Critical loads for clamped annular plates Jaminated of a and b materials.
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Fig. 5. Buckling curves for annular plates symmetrically laminated of 4 and b materials (the first eigenvalue
problem  =0-5,p = 10).
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interchanging the elastic stiffnesses in the radial and circumferential directions:

01 0057 . kg oo
[Ela = [005 2 ]X 10 om?’ [Els

1
» [Ela (55)

The radii ratio n was taken as 0-5. Fig. 1 corresponds to the first eigenvalue problem and Fig. 2
to the second one. Curves I correspond to the plates composed of a/b/a layers whereas curves I1
refer to a reversed lay-up—(b/a/b). The barred curves I and II correspond to d/b/a and b/a/b,
respectively. The proportionality factor p was chosen to be equal to 2 and 10 for Figs. 1 and 2,
respectively. The curves I, II, are associated with a symmetric arrangement of outer layers
(h\ = hs) and curves I, and II, show the results for two layered plates (etther k, = 0 or h; = 0).

The curves I, and II, are the mirror reflections with respect to the h./h = 0-5. As it follows
from Fig. 1, the possibilities for buckling load optimization exist: for the thickness parameter
ha/h <0-765 the optimal plate is an @/b/d lay-up, and for h./h =0-765—a b/a/b lay-up. The
ordinates of these curves correspond to maximal axisymmetric buckling loads. In Figs. 3 and 4
the critical load parameter ro° N, is plotted as a function of . An interesting implication is that the
critical load tends to a limit when n — 0. Thus, the inner pressure goes to infinity and the outer
pressure tends to a constant value. This fact also is true for an isotropic one-layered plate (Ref.

[13]).

In Fig. 5 the critical load parameter is given as a function of h./h. This figure clearly indicates
that for some special lamination of composite annular plates buckling loads are greater than for
individual constitutents: e.g., for the plate composed of b/a/b layers, this occurs in range
0:267 < ha/h < 1. For h.o/h =0-7, use of composite plate increases the buckling load by 16-3%
compared with a one-layered plate of material @ and by 88-7% compared with a plate of material
b.
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